7 research outputs found

    Proposing an Optimum Model for Time Estimation of Construction Projects in Iranian Gas Refineries

    Get PDF
    Time management can be effective in a project when the project schedule is based on comprehensive time scheduling. In the industries with complicated processes, many uncertainties and risks affect the timing of projects. Considering the very low reliability of the project planning in certainty-based approach, using more secure models for control and interact with uncertainty should be placed on the agenda. Iranian Gas Company has been using risk management to manage probable uncertainties in construction projects but in the field of possible uncertainties, actions are very scarce. This article aims to propose an optimum model based on the integrated risk management and fuzzy expert systems in order to provide comprehensive project time estimation and in this regard, reviews the results of the implementation of this model in construction projects of Iranian gas refineries. The results show that the proposed model increases the accuracy of time estimation about 8 to 24 percent.Time management can be effective in a project when the project schedule is based on comprehensive time scheduling. In the industries with complicated processes, many uncertainties and risks affect the timing of projects. Considering the very low reliability of the project planning in certainty-based approach, using more secure models for control and interact with uncertainty should be placed on the agenda. Iranian Gas Company has been using risk management to manage probable uncertainties in construction projects but in the field of possible uncertainties, actions are very scarce. This article aims to propose an optimum model based on the integrated risk management and fuzzy expert systems in order to provide comprehensive project time estimation and in this regard, reviews the results of the implementation of this model in construction projects of Iranian gas refineries. The results show that the proposed model increases the accuracy of time estimation about 8 to 24 percent

    Presenting a Model Based on Fuzzy Application to Optimize the Time of IBS Projects in Gas Refineries

    No full text
    Nowadays, the construction industry has started to embrace IBS as a method of attaining better construction quality and productivity and reducing risks related to occupational safety and health. The built of pre-fabricated component in factories reduces many problems related to lack of purposing uncertainty in scheduling calculation and time management of projects. In the case of using IBS method for managing time in projects, former studies such as Allan Tay’s research, indicates that this method can save up at least 29% of overall completion period versus the conventional method. But beside mentioned advantages of this technical method, the projects could be optimized more and more in scheduling calculations. This issue is critical in gas refineries, since special parameters such as risk of spreading poison H2S gas and mandatory of performing projects in short time period events such as maintenance overhauls demands to perform projects in optimum time. Custom scheduling calculation of project planning uses the Critical Path Method (CPM) as a tool for Planning Project’s activities. The researches of this paper’s authors indicated that Fuzzy Critical Path Method (FCPM) is the best technique to manage the uncertainty in project scheduling and can save up the construction project’s time versus the custom methods. This paper aims to present a model based on fuzzy application in CPM calculations to optimize the time of Industrial Building System

    Presenting a Model Based on Fuzzy Application to Optimize the Time of IBS Projects in Gas Refineries

    No full text
    Nowadays, the construction industry has started to embrace IBS as a method of attaining better construction quality and productivity and reducing risks related to occupational safety and health. The built of pre-fabricated component in factories reduces many problems related to lack of purposing uncertainty in scheduling calculation and time management of projects. In the case of using IBS method for managing time in projects, former studies such as Allan Tay’s research, indicates that this method can save up at least 29% of overall completion period versus the conventional method. But beside mentioned advantages of this technical method, the projects could be optimized more and more in scheduling calculations. This issue is critical in gas refineries, since special parameters such as risk of spreading poison H2S gas and mandatory of performing projects in short time period events such as maintenance overhauls demands to perform projects in optimum time. Custom scheduling calculation of project planning uses the Critical Path Method (CPM) as a tool for Planning Project’s activities. The researches of this paper’s authors indicated that Fuzzy Critical Path Method (FCPM) is the best technique to manage the uncertainty in project scheduling and can save up the construction project’s time versus the custom methods. This paper aims to present a model based on fuzzy application in CPM calculations to optimize the time of Industrial Building System

    Resonant Green's function for Euler-Bernoulli beams by means of the Fredholm Alternative Theorem

    No full text
    This paper presents the Green's function for a uniform thin beam which is assumed to obey the Euler-Bernoulli theory at resonant condition. The beam under study has a simple support at one end and a sliding support at the other. First, the differential equation governing the free vibration of the beam is obtained in the frequency domain using the Fourier transform. Then, we try to find the corresponding Green's function of the problem. But a contradiction occurs due to the special properties of resonance. In order to overcome this hurdle, the Fredholm Alternative Theorem is utilized. Remarkably, it is shown that this theorem, by adding a particular term to the Green's function, can remedy this problem and the modified Green's function is consequently established. Moreover, the deformation function of the beam is found in an integral equation form. Some diagrams and tables conclude this study
    corecore